工业上广泛使用的镀铬液由铬酐辅以少量的阴离子构成,镀液中Cr6+的存在形式根据铬酐浓度的不同而有差异,一般情况(Cr03200~400g/L)下,主要以铬酸(CrO42-)和重铬酸(Cr2O72-)形式存在。当pH值小于1时,Cr207-为主要存在形式;当pH值为2~6时,CrO72-与CrO42-存在下述平衡,即 Cr2072-+H20====2HCr04-+2CrO]一十2H+ 当pH值大于6时,CrO42-为主要存在形式。由此可以看出,镀铬电解液中存在的离子有Cr2072-、H+、cro42-和S042-等。实践证明,除SO42-外,其他离子都可以参加阴极反应,采用示踪原子法对铬酸镀铬过程的研究表明,镀铬层是由六价铬还原得到的,而不是三价铬。这也可由镀铬液的阴极极化曲线(见图4-18)得到。 (1)阴极过程 由恒电位法测定的镀铬液(含硫酸或不含硫酸)
1一由250g/L Cr03镀铬溶液中获得;2一由250g/L CrO3,5g/L H2S04的标准镀铬溶液中获得 阴极极化曲线可知,当镀液中不含硫酸时(曲线l),在阴极上仅析氢,不发生任何其他还原反应。当镀液中含有少量硫酸时(曲线2),阴极极化曲线由几个线段组成,在不同的曲线段上发生不同的还原反应。 ab段,随着阴极电流增加,电极电位逐渐负移,阴极上没有氢气析出和铬的生成。阴极区镀液pH值小于1,离子存在形式主要是Cr2072-,此时的阴极反应为 Crz072一+14H++6e_2Cr3++7H20 随着电极电位不断负移,b点达到最大值。b点以后,除了Cr2072-还原为Cr3+外,还可观察到阴极表面有大量气泡产生,表明H+离子被还原为氢气。 bc段,同时进行着Cr2072-还原为cr3+和H+还原为H2两个反应,但在这一段中随着电极电位负移,电流逐渐下降,表明电极表面状态发生了变化。胶体膜理论解释为,由于上述两个反应的进行,阴极表面附近的H+被大量消耗,pH值迅速升高(pH值大于3时),当生成的Cr3+离子数量达到Cr(OH)3的溶度积时,便与六价铬生成一层橘黄色的碱式铬酸铬胶体膜Cr(OH)3·Cr(OH)Cr04,覆盖在阴极表面上,阻碍了电极反应的进行,使得反应速度显著下降;又由于镀液中的硫酸对阴极胶体膜有一定溶解作用,使胶体膜的形成和溶解不断交替进行,致使曲线呈现如段形状。 由于氢的不断析出,使阴极区镀液pH值逐渐增大,促进Cr2072-转化成HCr04-离子,使HCrO4-离子浓度迅速增加。当电极电位负移到C点时,CrO42-便开始被还原成金属铬在阴极上析出,反应方程式为 HCr04+3H++6e—Cr+40H一 由此可以看出,只有当阴极电极电位达到c点以后,金属铬才能被还原析出。此时,在阴极上三个反应同时进行,随着阴极电极电位的负移,阴极电流迅速上升,反应速度加快,生成金属铬的主反应占的比重逐渐增大,即随着阴极电流密度的增大,阴极电流效率增加。 (2)阳极过程 镀铬所用的阳极是铅、铅锑(含锑6%~8%)或铅锡(含锡6%~8%)合金等不溶性阳极,这是镀铬不同于一般镀种的特点之一。因为在铬酸电解液中,金属铬镀层是由六价铬直接还原得到的。而金属铬阳极溶解时,却是以不同价态的离子形式存在,主要是三价铬的离子形式进入溶液,而且阳极的电流效率接近100%,这将导致三价铬含量迅速增加。而阴极电流效率只有10%~25%,使得镀液的组成不稳定。另外,金属铬硬而脆,不易加工成各种形状。 在正常生产中,铅或铅合金阳极的表面上生成一层暗褐色的二氧化铅膜。 Pb+2Hz 0一4e—PbOz+4H+ 这层膜不影响导电,阳极反应仍可正常进行,其电极反应为 2Cr3++7Hz0一6e—Crz0; 一+14H+2H20一4e—O2千+4H+ 由上述反应可以看出,在阴极上生成的cr3+离子,在阳极上又重新氧化成Cr2072-离子,从而使电解液中Cr3+浓度维持在一定的水平,以保证镀铬生产的正常进行。当镀液中的三价铬含量过高时,可采用大面积阳极和小面积阴极的方法进行电解处理,以降低镀液中三价铬的含量。在生产中一般控制阳极面积:阴极面积=(2:1)~(3:2),即可使Cr3+浓度保持在工艺允许的范围内。 在不通电时,悬挂于镀液中的铅或铅合金阳极,由于遭受铬酸浸蚀而在其表面形成导电性很差的黄色铬酸铅(PbCr04)膜,使槽电压升高,严重时造成阳极不导电,因此在不生产时,宜将阳极从镀槽中取出,浸在清水中,还应经常洗刷,除去铬酸铅黄膜。若黄膜很牢固,可在碱液中浸几天,待膜软化后,再洗刷除去。此外,镀铬液的分散能力和覆盖能力较差,必须注意阳极的形状和排布,在电镀复杂零件时,宜采用象形阳极和辅助阴极。 |