热镀锌钢板表面氨基硅烷膜的制备及其耐腐蚀性能 单凤君1,王双红2,刘常升2,齐国超2 (1.辽宁工业大学材料与化学工程学院,辽宁锦州 121001; 2.东北大学材料各异性与结构工程教育部重点实验室,辽宁沈阳 110004) [摘要] 为了减少金属材料硅烷化处理时挥发性有机物的排放,采用水溶性氨丙基三乙氧基硅烷(γ-APS)处理液在热镀锌钢板表面沉积了γ-APS膜。以NaCl溶液浸泡失重、塔菲尔极化曲线和电化学阻抗谱测技术,研究了γ-APS膜的耐蚀性能;通过傅立叶红外反射光谱(FTIR)和X射线光电子能谱(XPS)对1- APS膜的化学组成、结构及形貌进行了分析、表征。结果表明:γ- APS膜主要由Zn,Si,O,N和C等元素组成,并以Si-0-Si与Si-O-Zn化合键形成网络结构;γ-APS膜显著提高了热镀锌钢板的耐腐蚀性能。 [关键词]硅烷膜;热镀锌钢板;组构;耐蚀性能 [中图分类号] TG 178 [文献标识码]A [文章编号]1001 - 1560( 2011) 01 - 0006 - 04 0前言 硅烷化处理是一种新兴的环保型金属表面防护处理技术。硅烷膜可以单独作为防护性保护层,如果与有机涂层一起将具有更好的结合力,对其研究备受关注。多官能团硅烷的一般结构通式为(R10)3- Si -( CH2)n - R2,其中R10 -是水解基团,水解产物为硅醇,硅醇与金属表面的氢氧化物反应形成Si -0- Me键,即硅烷化,可以提高膜与金属基体的附着力;- R2为反应性基团,如乙烯基、氨基、环氧基等,能与有机涂层形成化学键[1,5]。已有的研究大多采用非水基硅烷,其硅烷溶液中含有大量的醇溶剂,增加了挥发性有机物质的排放。本工作以水溶性氨丙基三乙氧基硅烷(γ- APS)处理液对热镀锌钢板进行处理,通过电化学性能测试研究了γ- APS膜的组成、性质及其耐蚀性。 1试验 1.1γ-APS膜的制备 以H 表l 自制碱性脱脂剂配方 1.2测试分析 采用Bio-Rad FTS-3000型傅立叶变换红外光谱仪(FTIR)测试硅烷膜的光谱,波数为4000~400 cm-1,分辨率为 (1) NaCl溶液浸泡将2种各3片试样精确称重后浸入室温5% NaCl溶液中,每2d观察并称量一次,以单位面积、单位时间的失重和腐蚀速率考察其耐腐蚀性能。 (2)电化学参数采用 2 结果与讨论 2.1 γ-APS膜的结构 图1给出了热镀锌钢板表面γ-APS膜的傅立叶红外反射光谱:波数 图l γ- APS膜的红外反射光谱 2.2 γ-APS膜的耐蚀性能 2种试样用5% NaCl中性溶液浸泡的结果见图2。由图 图22种试样于5 %NaCl中性溶液中浸泡的腐蚀曲线 图3为热镀锌件及其经γ-APS处理后的动电位极化曲线。可见,γ- APS膜试样的阳极电流密度比镀锌件约降低一个数量级,腐蚀电位降低约0.02 V。由于在腐蚀介质中热镀锌件的主要阳极反应为金属锌的溶解,即形成Zn2+,γ—APS膜的存在抑制了锌的阳极溶解,而使其阴极电流密度降低约一个数量级;主要阴极反应为氧的还原,生成的OH-将进一步与Zn2+反应生成锌的氢氧化物或氧化物沉积于阴极表面,形成物理屏障,从而抑制了O2和电子在溶液及锌界面上的自由扩散和迁移,从而使腐蚀动力下降,腐蚀速率大大降低。 图3 5%Nacl中性溶液中热镀锌件及其γ-APS膜的极化曲线 表2是2种试样的电化学腐蚀参数,两者的阴阳极塔菲尔曲线斜率并没有明显的变化。从表2可知,γ-APS膜是物理阻挡层而非铬酸盐式的化学阻挡层。 表2极化曲线的电化学腐蚀参数 图4为2种试样的交流阻抗谱。由图 图4 5%Nacl中性溶液中热镀锌件及γ-APS膜的交流阻抗相角谱 由图4可知:膜阻玩表现为更宽泛的时间常数,其特征不明显,只有一个时间常数[9]而相角有2个时间参数;高频区(104~105 Hz)时间常数表明存在γ- APS膜,阻抗表现为斜率接近-1的直线,相角在较宽频率范围内接近-900,说明在该频率范围内,γ- APS膜相当于一个电阻值很大、电容值很小的隔绝层;中频区(10~l02 Hz)的时间常数表明基体与γ- APS膜存在界面层;低频区相位角曲线下降说明腐蚀介质的渗入改变了γ-APS膜的电阻与电容。从此可以推断,没有发生腐蚀。 2.3 γ-APS膜的组构 图5为γ- APS膜表面的全元素扫描谱。从图5可知,γ-APS膜主要含有Zn,O,C,N,Si元素,也还可能含有未检测到的H[10]。为了确定γ- APS膜中元素的化学结合状态,以窄幅扫描对XPS全元素谱中的相关峰位(结合能)进行了分析,采用分峰软件对各元素所对应的峰进行拟合,结果见图6(实线为原始数据,虚线为拟合状态)。 图5 γ-APS膜表面全元素扫描谱 图6γ-APS膜表面主要元素窄幅扫描谱 图 图6b为γ- APS膜表面Zn元素的窄幅扫描谱,分峰处理表明:结合能为1044.4,1022.24 eV时与Zn0的一致,1022.84 eV时与Zn( OH)2,ZnSi04的相近,说明γ-APS膜中Zn元素是以Zn0,Zn( OH)2与ZnSi04的形式存在[13]。 图 图6d为γ-APS膜表面N元素的窄幅扫描谱,结合能于401.78 eV时为R- NH2基团,表明γ- APS膜表面有自由氨基[12];结合能在399.35 eV时为反应性一NH3+基团,使金属基体表面带有过量的正电荷,从而可以解释Zn2p3/2向高结合能的漂移。 由上分析可知,热镀锌钢板经过γ- APS处理,形成了Si-O- Si或Si-0-Zn的硅氧烷网络结构,同时还存在锌的化合物及硅醇,从而形成了均匀、完整、耐蚀性良好的γ-APS膜。 3结论 (1)热镀锌钢板经γ- APS处理后,表面形成了暂时性的γ-APS膜。γ-APS膜的存在降低了阳极和阴极 阳极和阴极 腐蚀电流的密度,同时增大了体系的总阻抗,使得热镀锌钢板的耐蚀性能明显提高。 (2) γ- APS膜的主要成分为Zn,O,C,N,Si等元素,并形成了Si -O - Si或Si -O- Zn的硅氧烷网络结构。1 - APS膜中的Zn主要以Zn0, Zn(OH)2及ZnSi04/ZriSi03的形式存在。 [参考文献] [1]Yuan W, Van Ooij W J.Characterization of Organofunction-al Silane Films on Zinc Substrates[ J]. Joumal of Colloidand Interface Science,1997,185(1):197—209. [2]Zhu D Q,Van Ooij W J.Corrosion protection of AA 2024 -T3 by bis -[3-(triethoxysilyl) propyl] tetrasulfide in sodiumchloride solution,Part 2:mechanism for corrosion protection[J]. Corrosion Science,2003,45( 10):2177~2197. [3] 张卫民,胡吉明,硅烷膜的阴极电化学辅助沉积及其防护性能[J].金属学报,2006,42(3):295~298. [4]Cabral A M, Dutute R G,Montemor M F,et al.A compara-tive study on the corrosion resistance of AA2024 - T3 sub-strates pretreated with different silane solutions compositionof the films formed[J].Progress in Organic Coatings,2005,54(4):322 ~331. [5] Montemor M F,Rosqvist A,Fagerholm H,et al.The earlycorrosion behaviour of hot dip galvanised steel pre-treatedwith bis.1,2-( triethoxysilyl) ethane[J].Progress in Organ-ic Coatings ,2004,51(3):188~194. [6]Beccaria A M, Chiaruttini L.The inhibitive action of metac-ryloxypropylmethoxysilane( MAOS) on aluminium corrosionin NaCl solutions[ J]. Corrosion Science,1999,41(5):9, 41(5):774~788. [7]Zhu D Q, Van Ooij W J.Structural characterization of bis-[ triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilyl-propyl] amine silanes by Fourier transformation infraredspectroscopy and electrochemical impedance spectroscopy[J]. Adhesion Science Technology,2002,16( 26):1235~1260. [8]胡吉明,刘 惊,张鉴清,等.LY12铝合金表面DTMS膜的电化学沉积制备及其耐蚀性能[J].高等学校化学学报,2006,27(6):1121~1125. [9]Zhu D Q, Wim J,Van Ooij W J.Enhanced corrosion resist-ance of AA 2024 -13 and hot-dip galvanized steel using amixture of bis-[ triethoxysilylpropyl] tetrasulfideand bis-[tri-methoxysilylpropyl] amine[J].Electrochimica Acta,2004,49:1113~1125. [10]齐国超,贡雪南,孙德恩,等.镀锡钢板铬酸盐钝化膜的X射线光电子谱分析[J].东北大学学报(自然科学版),2006,27(8):875~878. [11]Trabelsi W,Dhouibi L,Triki E,et al.An electrochemicaland analytical assessment on the early corrosion behaviour ofgalvanised steel pretreated with aminosilanes[J].Surface&Coatings Technology,2005,192:284~290. [12]Montemor M F,Simes A M,Ferreira M G S,et al-Thecorrosion performance of organosilane based pre - treatmentsfor coatings on galvanised steel[J]. Progress in OrganicCoatings,2000,38:17~26. [13]郝建军,安成强,邵中财,等.A3钢镀锌层钼酸盐钝化膜的组成和性能[J].材料研究学报,2006,20(4):427~430. [编校:徐军] 注:本站部分资料需要安装PDF阅读器才能查看,如果你不能浏览文章全文,请检查你是否已安装PDF阅读器! |