金属表面在除油、除锈后,为了防止重新生锈,通常要进行化学处理,使金属表面生成一层保护膜,该膜通常只有几微米,主要起增强涂层和底材附着力的作用,较厚的膜层还能增强防锈性能。常用的表面化学转化方法有氧化、磷化、钝化三种。其中,磷化是化学处理的中心环节,是一种大幅度提高金属工件耐腐蚀能力的简单可靠、费用较低、操作简便的工艺方法,在工业上应用很广。
1与磷化工艺相关的标准
金属(主要指钢铁)经含有锌(Zn)、锰(Mn)、铬(Cr)、铁(Fe)等磷酸盐的溶液处理后,在基底金属表面形成一种不溶性磷酸盐膜,此种过程称为磷化。磷化使金属表面形成一层附着良好的保护膜,以磷酸锌为例,在氧化剂的存在下,所生成的磷化膜为Zn3(PO4)2·4H20和Zn2Fe(PO4)2·4H20的结晶体。该磷化膜闪烁有光、灰色多孔(空隙率为表面积的0.5%~1.5%),膜厚通常为0.1~50μm。
关于磷化工艺,我国和国际上都有相应的标准体系,可参照执行:
GB/T11376-1997金属的磷酸盐转化膜
GB/T6807-2001钢铁工件涂装前磷化处理技术条件
GB/T12612-1990多功能钢铁表面处理液通用技术条件
ISO9717-1990(E)金属的磷酸盐转化膜-确定要求的方法
ISOl0546-1993(E)化学转化膜-铝及铝合金上的漂洗和不漂洗铬酸盐转化膜
DIN50942-1973金属的磷化处理方法原理、缩写符号和检验方法
ANSI/ASTM/AMS2480C涂漆基体磷化处理
2磷化的作用
磷酸盐转化膜应用于铁、铝、锌、镉及其合金上,既可当作最终精饰层,也可作为其他覆盖层的中间层,其作用主要有以下方面。
2.1提高耐蚀性
磷化膜虽然薄,但由于它是一层非金属的不导电隔离层,能使金属工件表面的优良导体转变为不良导体,抑制金属工件表面微电他的形成,进而有效阻止涂膜的腐蚀。表1列出了磷化膜对金属耐蚀性能的影响。
表1不同膜层保护钢的试样经盐水浸泡的耐蚀性能
保护膜在3%NaCl溶液中首先出现腐蚀的时间/H
无覆膜
磷化膜
磷化膜加石蜡
两层烤漆
磷化膜加一层烤漆
长效防腐涂料
磷化膜加长效防腐涂料0.1
1
10~13
23~24
60
70
500h试验无腐蚀
1000h试验无腐蚀
2000h试验无腐蚀
2.2提高基体与涂层间或其他有机精饰层间的附着力
磷化膜与金属工件是一个结合紧密的整体结构。其间没有明显界限。磷化膜具有的多孔性,使封闭剂、涂料等可以渗透到这些孔隙之中,与磷化膜紧密结合,从而使附着力提高。
2.3提供清洁表面
磷化膜只有在无油污和无锈层的金属工件表面才能生长,因此,经过磷化处理的金属工件,可以提供清洁、均匀、无油脂和无锈蚀的表面。
2.4改善材料的冷加工性能,如拉丝、拉管、挤压等。
2.5改进表面摩擦性能,以促进其滑动。
3磷化的分类
磷化处理分类方法较多,工业上较为常用的有以下几种。
3.1按磷化膜种类分
可把磷化分为锌系、锌钙系、锌锰系、锰系、铁系、非晶相铁系六大类。
各种磷化膜的特点见表2。
表2磷化膜分类及特征
磷化膜类别磷化膜基本成分铁基体单位面积膜层(g/m2)结晶类型
锌系Zn2Fe(PO4)·4H2OZn3(PO4)2·4H2O1~40定型晶结构,树枝状、针状、空隙较多
锌钙系Zn2Ca(PO4)2·4H2OZn2Fe(PO4)2·4H2OZn3(PO4)2·4H2O1~15紧密颗粒状,有时有大的针状颗粒,空隙较少
锌锰系Zn2Fe(PO4)2·4H2OZn3(PO4)2·4H2O(Mn,Fe)5H2(PO4)4·4H2O1~40颗粒-树枝-针状混合晶型,空隙较少
锰系(Mn,Fe)5H2(PO4)4·4H2OMn3(PO4)2·3H2O酸式磷酸铁锰1~40密集颗粒状,空隙少
铁系Fe5H2(PO4)4·4H2O5~20颗粒状,空隙较多
非晶相铁系Fe3H2(PO4)2·8H2OFe2O3FePO4 2.5~1.5膜薄,结构呈非晶相平面分布
3.2按磷化膜质量分类
实际应用中,一般根据单位面积膜层质量(g/m2)衡量,可分为重量级、次重量级、轻量级、次轻量级四种。其作用见表4。通常膜薄附着力好,而膜厚耐蚀性好,涂装前处理所需膜层为0.5~7.5g/m2,一般锌系磷化膜控制在1~4.5g/m2,铁系磷化膜控制在0.2~1g/m2,与阴极电泳或粉末涂料配套时磷化膜控制在1~3g/m2。
表3磷化膜质量与用途的关系
质量分类膜质量/(g/m2)膜主要成分用途
次轻量级
轻量级
次重量级
重量级0.2~1
1.1~4.5
4.6~7.5
>7.5磷酸铁、磷酸钙等
磷酸锌等
磷酸锌等
磷酸锌、磷酸锰等用于变形大的工件作底层
作通用底层
用于基本不变形的工件作底层
作防锈用,不作底层 3.3按磷化处理温度分类
3.3.1高温磷化磷化处理温度为80~90℃。优点是配方成份简单,磷化速度快,磷化膜的耐蚀性、硬度及耐热性能较高。缺点是槽液温度高、耗能大、蒸发量大、沉渣多,成本高,形成磷化膜较厚且粗糙,一般不作涂装前的磷化。
3.3.2中温磷化磷化处理温度为60~75℃。优点是磷化速度较快,磷化结晶较细,耐蚀性能好,但磷化膜仍较厚,涂装后涂膜的光泽不好,一般适用于耐蚀性防护层及喷、刷漆的底层,但不适用于电泳及静电粉末喷涂的底层。
3.3.3低温磷化磷化处理温度为35~55℃。低温磷化成膜动力主要依赖配方中的促进剂等物质,形成的磷化膜薄而致密,平整光滑,槽液稳定,沉渣较少,能耗小,维护简便,使用综合成本低,是目前国内外涂装底层处理的主要技术。
3.3.4常温磷化常温状态下,不加温的磷化工艺。磷化成膜的动力完全依赖于配方中的促进剂成分。节能,减少设备投资,是新的发展趋势,但磷化速度较侵,对大批量产品不适用。磷化配方复杂,槽液维护调整难度较大,槽液浓度较高,但综合成本较低,是发展方向。
3.4按磷化处理工艺分类
磷化工艺主要有浸渍法、喷淋法和涂刷法,其作用和特点如表4所示。
表4各种磷化方法的特点
特点
浸渍法
喷淋法
涂刷法
膜厚
用途
适应性
生产规模
磷化温度
可获得各种厚度的膜层
各种用途
中小型各种形状的工件
小批量
各种温度
能获得中等和薄的膜层
涂料底层或工序间防蚀
大型工件
大批量
中、低温
能获得中等和薄的膜层
涂料底层或工序间防蚀
中小型工件
大批量
低温
(1)浸渍磷化适用于处理形状复杂的工件,沉渣量少,设备维护容易。缺点是磷化时间较长,处理浓度高,膜层结晶粗糙。
(2)喷淋磷化适用于处理几何形状较为简单的板材。由于喷射时的冲击力和磷化时的化学作用的结合,使喷琳磷化的速度提高,浓度较低,膜层结晶较为细密、均匀。缺点是工件内部部位不易磷化,还易遭受腐蚀,喷淋的沉渣较多,设备投资大,维护困难。
(3)涂刷磷化适用于大型钢铁构件的磷化或局部磷化,能获得中等和较薄的磷化膜,设备投资少,磷化方便。缺点是磷化膜不够均匀,受人为因素影响较大。
其他分类方法还有按磷化促进剂类型分,可分为硝峻盐型、亚硝酸盐型、氯酸盐型、有机氮化物型、钼酸盐型等;按磷化后是否水洗分类,分为水洗型磷化液和不水洗型磷化液;按磷化槽液沉渣的多少分类,分为多渣型磷化和低渣型磷化;按促进剂是否单独补加分类,分为内含促进剂型磷化和促进刑单独补加型磷化;按磷化液中是否含亚硝酸盐和镍盐分类等。
4磷化膜的标志符号
4.1磷化膜的标志符号的顺序组成
4.1.1磷化膜类型,按表3所示的缩写符号表示。
4.1.2磷化膜用途的表示符号
g-减摩;
i-电绝缘;
r-耐腐蚀和增强有机涂层或胶教剂的结合力;
z-冷变形加工润滑。
4.1.3单位面积上的膜层质量,单位为g/m2,容许误差为土30%。
4.1.4磷化膜后处理方法的表示符号
a-清漆,涂料或其他高分子材料封闭;
d-无机或有机盐封闭;
e-染色;
f-浸涂油、脂;
s-皂化;
w-涂蜡。
4.2磷化膜的标志符号实例说明
Znph·r·4·a
Znph-锌系磷化膜;
r-用于耐腐蚀和增强有机涂层或胶黏剂的结合力;
4-单位面积上的膜层质量为(4土1.2)g/m2;
a-后处理采用的清漆涂料或其他有机涂料。
在实际应用中,标志符号的四个部分不一定全部写出,例如,对不需要进行后处理的工件其标志符号可仅由前三部分表示,如果需方没有给出单位面积上的膜层质量,则可选用表3或其他相应数值。
5磷化技术的发展
国内磷化技术的研究起步较晚,20世纪80年代中期以后,随着汽车、电冰箱、洗衣机等家电行业的迅速发展和技术引进工作的加快,磷化技术逐渐被重视和推广应用。日本、德国、美国等工业发达国家从80年代中期以后,开始在中国设立磷化技术的专业公司,近几年来得到进一步扩大。国内从事磷化技术的研究院所和企业有:武汉材料保护研究所、兵器工业总公司第五九研究所、广州电器研究所、第一汽车制造公司、杭州五源科技实业有限公司、成都祥和磷化有限公司等。
磷化技术的发展趋势是向着低温、低能耗的方向发展;向着低污染、低毒性方向发展;向着低浓度、低成本方向发展。
|